jueves, 10 de diciembre de 2009

5.1 PRINCIPIOS DE HARDWARE DE IO

Es necesario proteger la información alojada en el sistema de archivos, efectuando los resguardos correspondientes [23, Tanenbaum].
De esta manera se evitan las consecuencias generalmente catastróficas de la pérdida de los sistemas de archivos.
Las pérdidas se pueden deber a problemas de hardware, software, hechos externos, etc.
Manejo de un bloque defectuoso:
Se utilizan soluciones por hardware y por software.
La solución en hardware:
Consiste en dedicar un sector del disco a la lista de bloques defectuosos. Al inicializar el controlador por primera vez: Lee la “lista de bloques defectuosos”. Elige un bloque (o pista) de reserva para reemplazar los defectuosos. Registra la asociación en la lista de bloques defectuosos. En lo sucesivo, las solicitudes del bloque defectuoso utilizarán el de repuesto. La solución en software: Requiere que el usuario o el sistema de archivos construyan un archivo con todos los bloques defectuosos. Se los elimina de la “lista de bloques libres”. Se crea un “archivo de bloques defectuosos”: Esta constituido por los bloques defectuosos. No debe ser leído ni escrito. No se debe intentar obtener copias de respaldo de este archivo. Respaldos (copias de seguridad o de back-up): Es muy importante respaldar los archivos con frecuencia.
Los respaldos pueden consistir en efectuar copias completas del contenido de los discos (flexibles o rígidos).
Una estrategia de respaldo consiste en dividir los discos en áreas de datos y áreas de respaldo, utilizándolas de a pares:
Se desperdicia la mitad del almacenamiento de datos en disco para respaldo. Cada noche (o en el momento que se establezca), la parte de datos de la unidad 0 se copia a la parte de respaldo de la unidad 1 y viceversa. Otra estrategia es el vaciado por incrementos o respaldo incremental : Se obtiene una copia de respaldo periódicamente (por ej.: una vez por mes o por semana), llamada copia total. Se obtiene una copia diaria solo de aquellos archivos modificados desde la última copia total; en estrategias mejoradas, se copian solo aquellos archivos modificados desde la última vez que dichos archivos fueron copiados. Se debe mantener en el disco información de control como una “lista de los tiempos de copiado” de cada archivo, la que debe ser actualizada cada vez que se obtienen copias de los archivos y cada vez que los archivos son modificados. Puede requerir una gran cantidad de cintas de respaldo dedicadas a los respaldos diarios entre respaldos completos. Consistencia del sistema de archivos: Muchos sistemas de archivos leen bloques, los modifican y escriben en ellos después.
Si el sistema falla antes de escribir en los bloques modificados, el sistema de archivos puede quedar en un “estado inconsistente”.
La inconsistencia es particularmente crítica si alguno de los bloques afectados son:
Bloques de nodos-i. Bloques de directorios. Bloques de la lista de bloques libres. La mayoría de los sistemas dispone de un programa utilitario que verifica la consistencia del sistema de archivos: Se pueden ejecutar al arrancar el sistema o a pedido. Pueden actuar sobre todos o algunos de los discos. Pueden efectuar verificaciones a nivel de bloques y a nivel de archivos. La consistencia del sistema de archivos no asegura la consistencia interna de cada archivo, respecto de su contenido. Generalmente pueden verificar también el sistema de directorios y / o de bibliotecas. Generalmente los utilitarios utilizan dos tablas: Tabla de bloques en uso. Tabla de bloques libres. Cada bloque debe estar referenciado en una de ellas. Si un bloque no aparece en ninguna de las tablas se trata de una falla llamada bloque faltante: No produce daños pero desperdicia espacio en disco. Se soluciona añadiendo el bloque a la tabla de bloques libres. También podría detectarse la situación de falla debida a un bloque referenciado dos veces en la tabla de bloques libres: Esta falla no se produce en los sistemas de archivos basados en mapas de bits, sí en los basados en tablas o listas. La solución consiste en depurar la tabla de bloques libres. Una falla muy grave es que el mismo bloque de datos aparezca referenciado dos o más veces en la tabla de bloques en uso: Como parte del mismo o de distintos archivos. Si uno de los archivos se borra, el bloque aparecería en la tabla de bloques libres y también en la de bloques en uso. Una solución es que el verificador del sistema de archivos: Asigne un bloque libre. Copie en el bloque libre el contenido del bloque conflictivo. Actualice las tablas afectando el bloque copia a alguno de los archivos. Agregue el bloque conflictivo a la tabla de bloques libres. Informe al usuario para que verifique el daño detectado y la solución dada. Otro error posible es que un bloque esté en la tabla de bloques en uso y en la tabla de bloques libres: Se soluciona eliminándolo de la tabla de bloques libres. Las verificaciones de directorios incluyen controles como: Número de directorios que apuntan a un nodo-i con los contadores de enlaces almacenados en los propios nodos-i; en un sistema consistente de archivos deben coincidir. Una posible falla es que el contador de enlaces sea mayor que el número de entradas del directorio: Aunque se eliminaran todos los archivos de los directorios el contador sería distinto de cero y no se podría eliminar el nodo-i. No se trata de un error serio pero produce desperdicio de espacio en disco con archivos que no se encuentran en ningún directorio. Se soluciona haciendo que el contador de enlaces en el nodo-i tome el valor correcto; si el valor correcto es 0, el archivo debe eliminarse. Otro tipo de error es potencialmente catastrófico: Si dos entradas de un directorio se enlazan a un archivo, pero el nodo-i indica que solo existe un enlace, entonces, al eliminar cualquiera de estas entradas de directorio, el contador del nodo-i tomará el valor 0. Debido al valor 0 el sistema de archivos lo señala como no utilizado y libera todos sus bloques. Uno de los directorios apunta hacia un nodo-i no utilizado, cuyos bloques se podrían asignar entonces a otros archivos. La solución es forzar que el contador de enlaces del nodo-i sea igual al número de entradas del directorio. También se pueden hacer verificaciones heurísticas, por ej.: Cada nodo-i tiene un modo, pero algunos modos son válidos aunque extraños: Ej.: Se prohibe el acceso al propietario y todo su grupo, pero se permite a los extraños leer, escribir y ejecutar el archivo. La verificación debería detectar e informar de estas situaciones. Se debería informar como sospechosos aquellos directorios con excesivas entradas, por ej., más de mil. Inicio: Fin: Desempeño del Sistema de Archivos
El acceso al disco es mucho más lento que el acceso a la memoria:
Los tiempos se miden en milisegundos y en nanosegundos respectivamente. Se debe reducir el número de accesos a disco. La técnica más común para reducir los accesos a disco es el bloque caché o buffer caché[23, Tanenbaum]: Se utiliza el término ocultamiento para esta técnica (del francés “cacher”: ocultar). Un caché es una colección de bloques que pertenecen desde el punto de vista lógico al disco, pero que se mantienen en memoria por razones de rendimiento. Uno de los algoritmos más comunes para la administración del caché es el siguiente: Verificar todas las solicitudes de lectura para saber si el bloque solicitado se encuentra en el caché. En caso afirmativo, se satisface la solicitud sin un acceso a disco. En caso negativo, se lee para que ingrese al caché y luego se copia al lugar donde se necesite. Cuando hay que cargar un bloque en un caché totalmente ocupado: Hay que eliminar algún bloque y volverlo a escribir en el disco en caso de que haya sido modificado luego de haberlo traído del disco. Se plantea una situación muy parecida a la paginación y se resuelve con algoritmos similares. Se debe considerar la posibilidad de una falla total del sistema y su impacto en la consistencia del sistema de archivos: Si un bloque crítico, como un bloque de un nodo-i, se lee en el caché y se modifica, sin volverse a escribir en el disco, una falla total del sistema dejará al sistema de archivos en un estado inconsistente. Se deben tener en cuenta los siguientes factores: ¿ Es posible que el bloque modificado se vuelva a necesitar muy pronto ?: Los bloques que se vayan a utilizar muy pronto, como un bloque parcialmente ocupado que se está escribiendo, deberían permanecer un “largo tiempo”. ¿ Es esencial el bloque para la consistencia del sistema de archivos ?: Si es esencial (generalmente lo será si no es bloque de datos) y ha sido modificado, debe escribirse en el disco de inmediato: Se reduce la probabilidad de que una falla total del sistema haga naufragar al sistema de archivos. Se debe elegir con cuidado el orden de escritura de los bloques críticos. No es recomendable mantener los bloques de datos en el caché durante mucho tiempo antes de reescribirlos. La solución de algunos S. O. consiste en tener una llamada al sistema que fuerza una actualización general a intervalos regulares de algunos segundos (por ej. 30). Otra solución consiste en escribir los bloques modificados (del caché) al disco, tan pronto como haya sido escrito (el caché):
Se dice que se trata de cachés de escritura. Requiere más e / s que otros tipos de cachés. Una técnica importante para aumentar el rendimiento de un sistema de archivos es la reducción de la cantidad de movimientos del brazo del disco (mecanismo de acceso): Se deben colocar los bloques que probablemente tengan un acceso secuencial, próximos entre sí, preferentemente en el mismo cilindro. Los nodos-i deben estar a mitad del disco y no al principio, reduciendo a la mitad el tiempo promedio de búsqueda entre el nodo-i y el primer bloque del archivo. Inicio: Fin: Descriptor de Archivos
El descriptor de archivos o bloque de control de archivos es un bloque de control que contiene información que el sistema necesita para administrar un archivo [7, Deitel].
Es una estructura muy dependiente del sistema.
Puede incluir la siguiente información:
Nombre simbólico del archivo. Localización del archivo en el almacenamiento secundario. Organización del archivo (método de organización y acceso). Tipo de dispositivo. Datos de control de acceso. Tipo (archivo de datos, programa objeto, programa fuente, etc.). Disposición (permanente contra temporal). Fecha y tiempo de creación. Fecha de destrucción. Fecha de la última modificación. Suma de las actividades de acceso (número de lecturas, por ejemplo). Los descriptores de archivos suelen mantenerse en el almacenamiento secundario; se pasan al almacenamiento primario al abrir el archivo. El descriptor de archivos es controlado por el sistema de archivos; el usuario puede no hacer referencia directa a él.
Inicio: Fin:
Seguridad

Los sistemas de archivos generalmente contienen información muy valiosa para sus usuarios, razón por la que los sistemas de archivos deben protegerla [23, Tanenbaum].
El Ambiente de Seguridad

Se entenderá por seguridad a los problemas generales relativos a la garantía de que los archivos no sean leídos o modificados por personal no autorizado; esto incluye aspectos técnicos, de administración, legales y políticos.

Se consideraran mecanismos de protección a los mecanismos específicos del sistema operativo utilizados para resguardar la información de la computadora.
La frontera entre seguridad y mecanismos de protección no está bien definida.

5.1.1 DISPOSITIVOS DE IO

El MPU usa 8 líneas de dirección para identificar dispositivos de I/O.
A este tipo de direccionamiento se le conoce como Peripherals-mapped I/O
El MPU puede identificar hasta 256 (28 = 256) dispositivos de entrada y 256 de salida
Los dispositivos de entrada y salida son diferenciados por las señales de control I/O Read e I/O Write


El rango de direcciones es de 00H a FFH es conocido como el mapa de I/O
Las direcciones son referidas como dirección del dispositivo o número de puerto de I/O
Para conectar dispositivos de I/O se deben resolver dos problemas
◦Como asignarles una dirección
◦Como conectarlos al bus de datos

En una arquitectura de bus, los dispositivos no pueden conectarse directamente al bus de datos o direcciones.
Todos los dispositivos deben conectarse a través de un dispositivo de interfaz tri-estado
De esta manera, los dispositivos estarán conectados y habilitados solamente si el MPU escoge comunicarse con ellos.

5.1.2 CONTROLADORES DE DISPOSITIVOS

Un controlador de dispositivo, llamado normalmente controlador (en inglés, device driver) es un programa informático que permite al sistema operativo interactuar con un periférico, haciendo una abstracción del hardware y proporcionando una interfaz -posiblemente estandarizada- para usarlo. Se puede esquematizar como un manual de instrucciones que le indica cómo debe controlar y comunicarse con un dispositivo en particular. Por tanto, es una pieza esencial, sin la cual no se podría usar el hardware.


Existen tantos tipos de controladores como tipos de periféricos, y es común encontrar más de un controlador posible para el mismo dispositivo, cada uno ofreciendo un nivel distinto de funcionalidades. Por ejemplo, aparte de los oficiales (normalmente disponibles en la página web del fabricante), se pueden encontrar también los proporcionados por el sistema operativo, o también versiones no oficiales hechas por terceros.
Debido que el software de controladores de dispositivos se ejecuta como parte del sistema operativo, con acceso sin restricciones a todo el equipo, resulta esencial que sólo se permitan los controladores de dispositivos autorizados. La firma y el almacenamiento provisional de los paquetes de controladores de dispositivos en los equipos cliente, mediante las técnicas descritas en esta guía, proporcionan las ventajas siguientes:


Seguridad mejorada. Puesto que los usuarios estándar no pueden instalar controladores de dispositivos que no estén firmados o que estén firmados por un editor que no es de confianza, los administradores tendrán un control riguroso respecto a los controladores de dispositivos que pueden usarse en una organización. Podrán impedirse los controladores de dispositivos desconocidos, así como cualquier controlador de dispositivo que el administrador no permita expresamente. Mediante el uso de directivas de grupo, un administrador puede proporcionar a todos los equipos cliente de una organización los certificados de los editores que se consideren de confianza, permitiendo la instalación de los controladores sin intervención del usuario, para comprobar que se trata de una firma digital de confianza.


Reducción de los costes de soporte técnico. Los usuarios sólo podrán instalar los dispositivos que hayan sido probados y admitidos por la organización. En consecuencia, el sistema permite mantener la seguridad del equipo, al tiempo que se reducen las solicitudes del departamento de soporte técnico.


Experiencia de usuario mejorada. Un paquete de controladores firmado por un editor de confianza y almacenado provisionalmente en el almacén de controladores funciona de modo automático, cuando el usuario conecta el dispositivo al equipo. No se requiere acción alguna por parte del usuario.

5.2 PRINCIPIOS DE SOFTWARE DE IO

El control de los dispositivos Entrada/Salida (Input/Output – I/O) del computador, es una de las labores más importantes que realiza el Sistema Operativo.


Manejo de interrupciones, controladores de dispositivos e interfaces al usuario son algunos de los componentes que se estudian en esta unidad, que permiten al SO orquestar el conjunto de aparatos conectados al computador.

A excepción de contados casos, los dispositivos de I/O pueden clasificarse en 2 grandes grupos:

Dispositivos de Bloques: aquellos que almacenan información en bloques de tamaño fijo, usualmente entre 512b y 32kb. Cada bloque puede ser leído o escrito de forma independiente. Ej: discos, discos USB.
Dispositivos de caracteres: acepta o suministra un flujo de caracteres no estructurados. No son direccionables ni pueden desplazarse en los datos.
Ej: teclado, mouse, red, etc.
Excepciones: relojes, video mapeado en memoria, etc.

5.2.2 MANEJADORES DE INTERRUPCIONES

Definición de Manejador de interrupción(interrupt handler).

Un manejador de interrupciones, también conocido como ISR (interrupt service routine o rutina de servicio de interrupción), es una subrutina callback en un sistema operativo o en un controlador de dispositivo cuya ejecución es desencadenada por la recepción de una interrupción. Los manejadores de instrucciones tienen una multitud de funciones, que varían basadas en el motivo por el cual la interrupción fue generada y la velocidad en la cual el manejador de interrupciones completa su tarea.Estos manejadores pueden ser iniciados por interrupciones de hardware o de software, y son usados para servir a los dispositivos de hardware y transiciones entre modos protegidos de operación como los llamados de sistema


INTERRUPCIONES
El periférico lleva la iniciativa.
Una interrupción de E/S es asíncrona con respecto a la ejecución de las instrucciones.
No esta asociada a ninguna instrucción.
El periférico estará conectado a una línea de interrupciones del procesador.
Se necesita especificar el identificador del periférico que realizara la interrupción.
Es habitual que haya interrupciones más urgentes que otras, por lo que se requiere algún sistema de prioridades.
Se requiere hardware especial (causar y detectar interrupción).

Proceso de Interrupción

Activación, por parte del periférico, de la línea de interrupción.
Suspensión de la ejecución del programa en curso:
Termina la instrucción en curso.
Almacenamiento del estado del procesador (PC y otros reg.).
Identificación de la fuente de la interrupción.
Carga y ejecución de la rutina de interrupción.
Recuperación del estado anterior a la interrupción.
Reanulación de la ejecución del programa interrumpido.

5.2.3 MANEJADOR DE DISPOSITIVOS

Dispositivos de interfaz de usuario. Se llama así a los dispositivos que permiten la comunicación entre los usuarios y la computadora. Dentro de este grupo se incluyen todos los dispositivos que sirven para proporcionar interfaz con el usuario, tanto para entrada (ratón, teclado, etc.) como para salida (impresoras, pantalla, etc.). Existen periféricos menos habituales, pero más sofisticados, tales como un escáner, lectores de huella digital, lectores de cinta magnética, instrumentos musicales digitales (MIDI), etc.

• Dispositivos de almacenamiento. Se usan para proporcionar almacenamiento no volátil de datos y memoria. Su función primordial es abastecer de datos y almacenamiento a los programas que se ejecutan en la UCP. Según su capacidad y la inmediatez con que se puede acceder a los datos almacenados en estos dispositivos, se pueden dividir en almacenamiento secundario (discos y disquetes) y terciario (cintas)

Periféricos o dispositivos de E/S. Elementos que se conectan a la unidad central de proceso a través de las unidades de entrada/salida. Son el componente mecánico que se conecta a la computadora.

• Controladores de dispositivos o unidades de E/S. Se encargan de hacer la transferencia de información entre la memoria principal y los periféricos. Son el componente electrónico a través del cual se conecta el dispositivo de E/S. Tienen una conexión al bus de la computadora y otra para el dispositivo (generalmente mediante cables internos o externos).

* Contienen el código dependiente del dispositivo
*Cada manejador mantiene su cola de solicitudes

5.2.4 SOFTWARE DE IO INDEPENDIENTE DE DISPOSITIVOS

Objetivos del Software de IO
Un concepto clave es la independencia del dispositivo:
• Debe ser posible escribir programas que se puedan utilizar con archivos en distintos dispositivos, sin tener que modificar los programas para cada tipo de dispositivo.
• El problema debe ser resuelto por el S. O.
El objetivo de lograr nombres uniformes está muy relacionado con el de independencia del dispositivo.
Todos los archivos y dispositivos adquieren direcciones de la misma forma, es decir mediante el nombre de su ruta de acceso.
Otro aspecto importante del software es el manejo de errores de e / s:
• Generalmente los errores deben manejarse lo más cerca posible del hardware.
• Solo si los niveles inferiores no pueden resolver el problema, se informa a los niveles superiores.
• Generalmente la recuperación se puede hacer en un nivel inferior y de forma transparente. Otro aspecto clave son las transferencias síncronas (por bloques) o asíncronas (controlada por interruptores):
• La mayoría de la e / s es asíncrona: la cpu inicia la transferencia y realiza otras tareas hasta una interrupción.
• La programación es más fácil si la e / s es síncrona (por bloques): el programa se suspende automáticamente hasta que los datos estén disponibles en el buffer.
El S. O. se encarga de hacer que operaciones controladas por interruptores parezcan del tipo de bloques para el usuario.
También el S. O. debe administrar los dispositivos compartidos (ej.: discos) y los de uso exclusivo (ej.: impresoras).
Generalmente el software de e / s se estructura en capas (ver Figura 5.3 [23, Tanenbaum]):
• Manejadores de interrupciones.
• Directivas de dispositivos.
• Software de S. O. independiente de los dispositivos.
• Software a nivel usuario.

5.3 DISCOS RAM

Puedes reservar una parte de la memoria de tu ordenador para que funcione como unidad de disco, llamada disco RAM. Con un disco RAM, puedes grabar y recuperar archivos con gran rapidez, pero el almacenamiento de los archivos es sólo temporal.
La velocidad es mayor si utilizas un disco RAM, y además ahorrarás energía, ya que el ordenador consume menos y tarda menos en acceder a la RAM que en acceder a un disco duro.

A los usuarios de PowerBook el disco RAM les resultará útil para maximizar la duración de las baterías.
Pueden guardar los archivos más utilizados en el disco RAM, ya que acceder a él consume menos que acceder a las unidades de disco duro. Además, el hecho de acceder con frecuencia a archivos en disco RAM permite a los PowerBook "frenar" más a menudo el giro del disco rígido interno.
La memoria asignada a un disco RAM no está disponible para programas; tenlo presente a la hora de seleccionar el tamaño del disco RAM. Lo normal es que represente entre un 25 y un 50% de la memoria disponible, ya que de no ser así otras aplicaciones no tendrían suficiente RAM para funcionar correctamente.

5.4. DISCOS DUROS

es un dispositivo de almacenamiento no volátil, es decir conserva la información que le ha sido almacenada de forma correcta aun con la perdida de energía, emplea un sistema de grabación magnética digital, es donde en la mayoría de los casos se encuentra almacenado el sistema operativo de la computadora. En este tipo de disco se encuentra dentro de la carcasa una serie de platos metálicos apilados girando a gran velocidad. Sobre estos platos se sitúan los cabezales encargados de leer o escribir los impulsos magnéticos. Hay distintos estándares a la hora de comunicar un disco duro con la computadora. Existen distintos tipos de interfaces las más comunes son: Integrated Drive Electronics (IDE, también llamado ATA) , SCSI generalmente usado en servidores, SATA, este último estandarizado en el año 2004 y FC exclusivo para servidores.

5.5 RELOJES

Son el medio por el cual funciona la CPU. Básicamente todo sistema de computadora cuenta con un cristal de cuarzo que vibra a determinada frecuencia. Incluso, cuando se compra un procesador, lo primero que se hace es saber a qué velocidad de reloj trabajará éste. Actualmente se cuentan con procesadores capaces de trabajar a velocidades que varían desde los 800 Mega Hertz hasta los 4 Giga Hertz o más. Un Hertz está definido como el tiempo que transcurre durante un ciclo completo, donde un ciclo se define como un pico y un valle.

5.5.1 HARDWARE DE DISCOS

Se compone de muchos elementos; citaremos los más importantes de cara a entender su funcionamiento. En primer lugar, la información se almacena en unos finos platos o discos, generalmente de aluminio, recubiertos por un material sensible a alteraciones magnéticas. Estos discos, cuyo número varía según la capacidad de la unidad, se encuentran agrupados uno sobre otro y atravesados por un eje, y giran continuamente a gran velocidad.
Asimismo, cada disco posee dos diminutos cabezales de lectura/escritura, uno en cada cara. Estos cabezales se encuentran flotando sobre la superficie del disco sin llegar a tocarlo, a una distancia de unas 3 o 4 micropulgadas (a título de curiosidad, podemos comentar que el diámetro de un cabello humano es de unas 4.000 micropulgadas). Estos cabezales generan señales eléctricas que alteran los campos magnéticos del disco, dando forma a la información. (dependiendo de la dirección hacia donde estén orientadas las partículas, valdrán 0 o valdrán 1).
La distancia entre el cabezal y el plato del disco también determinan la densidad de almacenamiento del mismo, ya que cuanto más cerca estén el uno del otro, más pequeño es el punto magnético y más información podrá albergar.

5.5.2 SOFTWARE RELOJ

Una computadora personal tiene un reloj de hardware alimentado por una batería. Esa batería asegura que el reloj continúe trabajando aún cuando la computadora se encuentre sin suministro eléctrico. El reloj de hardware puede ser modificado (o definido) desde la pantalla de configuración de la BIOS o desde cualquier sistema operativo.

El kernel Linux mantiene la fecha y hora de manera independiente al reloj de hardware. Durante el inicio de un sistema Linux, el kernel configura su propio reloj de software accediendo a la fecha y hora mantenida por el reloj de hardware. Luego, ambos relojes trabajan independientemente. Linux mantiene su propio reloj debido a que leer el reloj de hardware constantemente es lento y complicado.

5.5.3 MANEJADOR DE RELOJ

Las principales funciones del software manejador del reloj son:
 Mantener la hora del día o tiempo real
 Evitar que los procesos se ejecuten durante mas tiempo del permitido
 Mantener un registro del uso de la CPU
 Controlar llamadas al sistema tipo “alarm” por parte de los procesos del usuario
 Proporcionar cronómetros guardianes de partes del propio sistema
 Realizar resúmenes, monitoreo y recolección de estadísticas
El software manejador del reloj puede tener que simular varios relojes virtuales con un único reloj físico.


5.6 TERMINALES

Dispositivo del hardware electrónico o electromecánico que se usa para introducir o mostrar datos de una computadora. Su funcion es mostrar y recibir datos con capacidad significativa del procesador de datos, puede ser llamado “Terminal inteligente o cliente lijero”.
Una computadora puede ejecutar software que envie la funcion de un terminal en cocaciones permitiendo el uso simultaneo de programas locales y acceso a un servidor.

5.6.1 HARDWARE DE TERMINALES

Puertos serie hay de 2 tipos: Los DB25 y los DB9.
Los DB9 son los vulgarmente (e incorrectamente) conocidos como puertos de mouse. Tienen 9 patillas y son "macho" es decir: que las patillas son pinchos. En los conectores "hembra", las patillas son orificios para que entren los pinchos. Cualquier semejanza con el sexo real está hecha con toda la intencionalidad. :-)


Puerto serie DB9
A continuación os pongo un "gráfico" cutre para que sepáis que es lo que hay que ver detrás del PC para localizar el puerto serie:
.---------------.
\ o o o o o /
\ o o o o /
`-----------'
Si localizáis alguno, que además tiene que ser macho (pinchos) seguramente se trata de un puerto serie.
Si lo encontráis en su versión "hembra" (con orificios) se trata de el adaptador de VÍDEO (CGA, Hércules, EGA o VGA-digital).
Puerto serie DB25
También podéis encontrar su versión de 25 pines:
.-------------------------------.
\ o o o o o o o o o o o o o /
\ o o o o o o o o o o o o /
`---------------------------'
Igualmente, las patillas tienen que ser pinchos. Si son orificios, se trata de un puerto de impresora.

5.6.2 MANEJADORES

El manejador es responsable de las siguientes tareas:
1 Interacción con el manejador de archivos: Los datos en la base se guardan en disco mediante el sistema de archivos, proporcionado comúnmente por el sistema operativo. El manejador de la base, traduce las diferentes proposiciones del manejo de datos en comandos del sistema de archivos de bajo nivel. De esta forma el manejador se puede encargar del almacenamiento, recuperación y actualización de los datos en la base.
2 Implantación de la integridad: Los valores de los datos que se almacenan en la base, deben satisfacer ciertas limitantes de consistencia, estas limitantes deben ser determinadas por el administrador, pero es el manejador el encargado de verificar que las actualizaciones que se hagan a la base cumplan con dichas normas.
3 Puesta en práctica de la seguridad: El manejador de la base es quien verifica que los accesos a la base sean realizados por las personas autorizadas.
4 Respaldo y recuperación: Entre las labores que debe ejecutar el manejador está la de verificar de forma constante la integridad de la base, y lograr recuperación de datos y/o mejoras en caso que se requieran.
5 Control de concurrencia: Se podría entender, esta, como la principal tarea del manejador de la base, o por lo menos la más difícil. Cuando varios usuarios están accesando la base al mismo tiempo, es posible que la consistencia de los datos no se conserve. El manejador debe encargarse de coordinar los accesos de los diferentes usuarios, de forma que los datos en la base no se dañen.